
Bulk Data Movement for Climate Dataset: Efficient Data Transfer
Management with Dynamic Transfer Adjustment

Alex Sim1, Mehmet Balman1, Dean Williams2, Arie Shoshani1, Vijaya Natarajan1

1Lawrence Berkeley National Laboratory, USA
2Lawrence Livermore National Laboratory, USA

ABSTRACT
Many scientific applications and experiments, such as high
energy and nuclear physics, astrophysics, climate
observation and modeling, combustion, nano-scale material
sciences, and computational biology, generate extreme
volumes of data with a large number of files. These data
sources are distributed among national and international
data repositories, and are shared by large numbers of
geographically distributed scientists. A large portion of data
is frequently accessed, and a large volume of data is moved
from one place to another for analysis and storage. One
challenging issue in such efforts is the limited network
capacity for moving large datasets to explore and manage.
The Bulk Data Mover (BDM), a data transfer management
tool in the Earth System Grid (ESG) community, has been
managing the massive dataset transfers efficiently with the
pre-configured transfer properties in the environment where
the network bandwidth is limited. Dynamic transfer
adjustment was studied to enhance the BDM to handle
significant end-to-end performance changes in the dynamic
network environment as well as to control the data transfers
for the desired transfer performance. We describe the results
from the BDM transfer management for the climate
datasets. We also describe the transfer estimation model and
results from the dynamic transfer adjustment.
Keywords: Bulk data movement, Climate datasets, Earth System
Grid, Dynamic transfer adjustment, Transfer estimation model

1. INTRODUCTION
Data intensive applications and experiments such as
astrophysics, climate modeling, combustion, high energy
and nuclear physics, nano-scale materials science and
computational biology, is expected to generate exabytes of
data over the next 5-10 years, which must be transferred,
visualized, and analyzed by geographically distributed
teams of researchers. The large amount of data must be
continuously moved from the data source repositories to
scientists and to analysis, visualization, and storage
facilities. The Earth System Grid (ESG) [1] is one of the
communities that face the difficult challenge of managing
the distribution of massive datasets to thousands of
scientists around the world. An important new collection of
climate datasets, referred to as the “replica centralized
archive (RCA)”, is expected to comprise 1.2 petabytes (PB)
during the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report (AR5) in 2011. The

amount of data collected and produced is expanding at a
staggering rate, and projected to exceed hundreds of
exabytes by 2020 [2]. It takes 100 Gbps end-to-end
bandwidth to move one petabyte in a day, and an additional
10,000 times of performance increase is needed for 100
exabytes in 2020. The ESG and others have recognized that
the new centralized data and future datasets can only be
efficiently served to researchers around the world by
replicating it to sites closer to them [3]. To move data
replicas efficiently, the ESG has developed a data transfer
management tool called the Bulk Data Mover (BDM) [4]
[10]. The BDM is responsible for the successful replication
of large datasets, and achieves high performance using a
variety of techniques. The performance of the BDM is
controlled by the pre-configured transfer parameters such as
number of concurrency and number of parallel streams.
Higher preset on these transfer parameters may overload the
storage and network capacity, and could result in overall
performance decrease. Dynamic transfer adjustment is
essential to handle the dynamics of the shared network
environments as well as to optimize the BDM data transfers.
The dynamic transfer management in BDM contributes to
achieve the fully available network and storage bandwidth
as well as to control the end-to-end data transfers for the
desired transfer performance.

2. BACKGROUND
2.1 Earth System Grid
As the climate community makes its first steps towards
building a “science gateway” - a data access and analysis
system open to everyone - the “Earth System Grid” (ESG)
is central to the current and future infrastructure that enables
the large federated enterprise system for the dissemination
and management of extreme scale climate resources. ESG
provides climate resources such as data, information,
models, analysis and visualization tools, and other
computational capabilities for data management and
diagnosis. The ESG project’s goals are (1) to make data
more useful to climate researchers by developing Grid
technology that enhances data usability; (2) to meet specific
needs which national and international climate projects have
for distributed datasets, data access, and data movement; (3)
to provide a universal and secure web-based data access
portal for broad-based multi-model data collections; and (4)
to provide a wide-range of Grid-enabled climate data

analysis tools and diagnostic methods to climate
communities [5] [11]. Thus, ESG is working to integrate
distributed data and computers, high-bandwidth wide-area
networks, and remote computing using climate data analysis
tools in a highly collaborative problem-solving
environment.
Since production began in 2004, the ESG has hosted and
distributed significant and often very large data collections
for many well-known efforts in climate science. As of April
2010, the ESG production system has over 20,000 registered
users. ESG manages approximately 270 TB of model data,
comprising the contents of archives at five sites around the
U.S. ESG users have downloaded more than 1PB of data.

2.2 Bulk Data Mover
Climate datasets are characterized by large volume of files
with extreme variance in file sizes. BDM as a high-level
data transfer management component handles the issue of
large variance in file sizes and a big portion of small files by
managing the file transfers with optimized transfer queue
and concurrency management algorithms. The BDM
achieves high performance using a variety of techniques,
including multi-threaded concurrent transfer connections,
data channel caching, load balancing over multiple transfer
servers, and storage I/O pre-fetching. Logging information
from the BDM is collected and analyzed to study the
effectiveness of the transfer management algorithms.
The BDM can accept a request composed of multiple files
or an entire directory. The request also contains the target
site and directory where the replicated files will reside. If a
directory is provided at the source, then the BDM will
replicate the structure of the source directory at the target
site. The BDM is capable of transferring multiples files
concurrently as well as using parallel TCP streams. The
optimal level of concurrency or parallel streams is de-
pendent on the bandwidth capacity of the storage systems at
both ends of the transfer as well as achievable bandwidth on
the wide-area network. Setting up the optimal level of
concurrency is an important issue, especially in climate
datasets, because of the many small files. Concurrency that
is too high becomes ineffective (high overheads and
increased congestion), and concurrency that is too low will
not take advantage of available bandwidth. A similar
phenomenon was observed when setting up the level of
parallel streams.
The BDM is designed to work in a “pull mode”, where the
BDM runs as a client at the target site. This choice is made
because of practical security aspects: site managers usually
prefer to be in charge of pulling data, rather than having
data pushed at them. However, the BDM could also be
designed to operate in a “push mode”, or as an independent
third-party service. Because a large-scale data replication
can take a long time (from many minutes to hours and even
days) the BDM is an asynchronous service. That means that
when a replication request is launched, a “request token” is

returned to the client. The client should be able to use that
request token to check the status of the request execution at
any time. Due to the long lasting nature of large-scale
replication, request monitoring and recovery from any
transient failures is another important part of the BDM.

3. OPTIMAL TRANSFER MANAGEMENT
3.1 Concurrent transfers and data streaming
When the datasets consist of a mixture of large and small
files such as the climate datasets, it is not simple to
maximize the transfer performance with a prefixed number
of concurrency and parallel streams. The typical file size
distribution in climate dataset in Intergovernmental Panel on
Climate Change (IPCC) Coupled Model Intercomparison
Project, phase 3 (CMIP-3) indicates that most of the data
files have less than 200MB of file size, and among those
smaller files, file sizes less than 20MB have the biggest
portion. Using parallel streams, in general, improves the
performance of datasets with large files, and the pipelining
technique in GridFTP transfer protocol [9,21] improves the
performance of datasets with lots of small files within the
transfer connection. However, when the file size is less than
a certain threshold based on the available network
bandwidth, parallel streams can decrease the performance of
the file transfer.

Figure 1 shows that a typical climate dataset transfer over a
shared network. It shows transfer throughput performance
from two data sources at LLNL to one destination at
NERSC over time in seconds on different concurrency and
number of parallel streams.

Figure 1: Climate data replication from LLNL to NERSC over
shared network. GridFTP transfers of climate dataset from two
sources at LLNL to one destination at NERSC show throughput
history over time in seconds on different transfer properties.

BDM creates concurrent transfer connections, and have files
streaming through the connections with a certain number of
parallel streams. In Figure 1, BDM managed throughput
performances in the climate datasets almost the same in
transfers with different parameters, but transfers with less
parallel streams show more consistency in file transfer rates
throughout the request. For example, the transfers with 4
concurrency and 8 parallel streams per data source (the plot
with 4x8) have the same number of total streams 64 (4
concurrency x 8 parallel streams x 2 data sources) as the
transfers with 32 concurrency and 1 parallel stream (the plot
with 32x1), but it shows more consistent transfer rates with
1 parallel stream. It indicates that the parallel streams do
not have much effect in the transfer performance for this
type of datasets.
Multi-threaded concurrent connections and file streaming
which open and maintain N different transfer connections
and having N different files streaming through at the same
time, has shown to improve the performance of datasets
specially with the mixture of large and small files. Each
connection performance depends on how to maintain the file
streaming within the transfer connection without gaps
between file transfers. Figure 2 shows the number of
concurrency over time in seconds in transfers with different
transfer parameters. They are from the same transfer runs
from Figure 1. It shows that BDM maintains the number of
concurrency throughout the transfer run without gaps
between file transfers. BDM achieves the high density of
data flows by maintaining transfer queue and storage I/O
pre-fetching.

3.2 Balanced transfer connections
When multiple transfer sources are available, transfer
connections can be balanced, and the overall throughput
performance to the destination can be increased. Balancing
algorithm can be as simple as round robin over multiple
transfer sources or based on the available bandwidth for

each transfer source. BDM manages concurrent connections
in mixture of round robin and total file sizes in the transfer
queue per connection. BDM transfer queue management
module assigns files to transfer queue for each concurrent
transfer connection, and when it detects the total sizes of the
files waiting in the queue is more than the certain threshold,
the connection does not get any more files assigned until file
transfers are completed in that particular connection. In that
way, each transfer connection maintains similar byte sizes in
its transfer queue to other transfer connections, but not the
similar number of files unless the files are all in similar
sizes. Figure 1 and Figure 2 show transfers from two data
sources (one shown in green and another shown in red), and
number of total concurrent transfers and cumulative
throughput are very similar for two data sources.

3.3 Transfer Queue Management
Transfer queue management and concurrent connection
management contribute to more transfer throughput,
including both network and storage. When the dataset has a
large variance in the file sizes, continuous data flow from
the storage into the network can be achieved by pre-fetching
data from storage on to the transfer queue of each
concurrent transfer connection. This overlapping of storage
I/O with the network I/O helps improve the transfer
performance.

As in Figure 3, BDM manages a DB queue from the
concurrent transfer connections, and also manages the
transfer queues for concurrent file transfers. Each transfer
queue checks the configurable threshold for the queued total
files size and gets more files to transfer from the DB queue
when the queued total files size goes below the configured
threshold. Default threshold is set to 200MB based on the
file size distribution as discussed in section 3.1.
Storage I/O pre-fetching includes inode creation for writing
files at the destination. In many file system cases, many

Figure 3: Transfer and concurrency management in BDM,
showing dynamic transfer adjustment

Figure 2: Climate data replication from LLNL to NERSC over
shared network showing concurrent GridFTP transfers and load
balancing over multiple data sources

inode creations at the same time cause a significant
overhead in file system performance, and this overhead
affects the transfer performance. By creating inodes at the
destination paths when files are being on the transfer queue,
BDM achieves faster storage I/O during the transfers.
Figure 4 shows another climate data transfers from LLNL to
NERSC for 4.8TB of a climate dataset from two source
servers to one destination. Transfer throughput was
consistent most of the time throughout the request, as
expected. In the middle of the dataset transfers, low
performance was detected, as shown in the middle of the
plot, but the number of concurrency was still at 64 all
together. This caused each concurrent connection
performance to be much lower, and may have caused packet
loss too. The dynamic transfer adjustment can help this case
in minimizing overhead of slow data transfers during the
low performance period, and the BDM can reduce the
number of concurrent transfers to maximize the per-
connection throughput which could maximize the resource
usability during those time.

4. DYNAMIC TRANSFER ADJUSTMENT
Characteristics of the communication infrastructure
determine which action should be taken when tuning data
transfer operations in order to obtain high transfer rates.
Local area networks and wide area networks have different
characteristics, so they demonstrate diverse features in terms
of congestion, failure rate, and latency. In most cases,
congestion is not a concern in dedicated high bandwidth
networks. However, the latency wall in data transfers over
high bandwidth connections is still an issue [12,13,14].

Enough data should be obtained from the applications and
storage layers for high throughput performance. Data
transfer optimization has been deeply studied in the
literature [15,16,17]. However, many of the solutions
require kernel level changes that are not preferred by most
domain scientists. In this study, we concentrate on
application level auto-tuning methodologies that are applied
in user-space for better transfer performance [18,19,20,21].
Using multiple data transfer streams is a common technique
applied in application layer to increase the network
bandwidth utilization [13,17,22]. Instead of a single
connection at a time, multiple streams are opened for a
single data transfer service. Larger bandwidth in a network
is gained with less packet loss rate; concurrent data transfer
operations that are initiated at the same time better utilize
the network and system resources.

4.1 Application-level dynamic tuning
To achieve high throughput, the number of multiple
connections needs to be adjusted according to the capacity
of the underlying environment. There are several studies on
parameter estimation in order to predict the network
behavior and to find a good estimation for the level of
parallelism [17,22,23,24,25]. However, those techniques
usually depend on performance results of sample transfers
with different parameters. The systems probe and
measurements with external profilers are needed. Complex
models are used to calculate the optimum number of
multiple streams with the help of sample measurements in
order to make a prediction [23,25,26]. Further, network
conditions may change over time in the shared
environments, and the estimated value might not reflect the
most recent state of the system. The achievable end-to-end
throughput and the system load in communicating parties
might change during the period of a data transfers,
especially when large volume of data needs to be
transmitted.
Dynamically setting the number of optimal parallel streams
has been introduced in [27]. Further, there are several
studies in adaptive parameter tuning [20,22]. We have
designed a similar approach in which the number of
concurrent connections is set dynamically in a large-scale
data transfer. The proposed methodology operates without
depending on any historical measurements and does not use
external profiles for measurement. Instead of using
predictive sampling as proposed in [17,25,26], we make use
of the instant throughput information gathered from the
actual data transfer operations that are currently active. The
number of multiple streams is set dynamically in an
adaptive manner by gradually increasing the number of
concurrent connections up to an optimal point. The
adaptive approach does not require complex models for
parameter optimization. This also enables us to adapt
varying environmental conditions to come up with a high-
quality tuning for best system and network utilization.

Figure 4: Climate data replication from LLNL to NERSC over
shared network. Transfers from 11208 files in 4.8TB of climate
dataset from two sources at LLNL to one destination at NERSC
with 32 concurrency and 1 parallel stream for each data source
show throughput history over time in seconds on the top and the
number of concurrency over time in seconds on the bottom.

Gradually improving concurrency level brings a near
optimal value without the burden of complex optimization
steps to find the major bottleneck in a data transfer. In this
adaptive algorithm, a change in the performance is detected
and the number of concurrent connections is adjusted
accordingly. Figure 5 shows the results from an adaptive
transfer performance with the number of concurrent TCP
streams. We have conducted our experiments in a 1-Gbps
network where synthetic data transfer operations were
started in order to simulate a communication channel with
the shared bandwidth. The adaptive tuning by adjusting the
concurrency level dynamically results better throughput
performance. Figure 5.a shows the number of streams over
time in seconds. Figure 5.b shows the total volume of data
transferred over time, and Figure 5.c shows the instant
throughput measured while data transfer operation is active.
The changes in the performance as in Figure 5.c were
detected, and the number of concurrent streams was
adjusted over time as in Figure 5.a.

Instead of making measurements with external profilers to
set the level of concurrency, transfer parameters are
calculated using information from current data transfer
operations. Thus, the network would not have extra packets
and extra load is not put onto the system due to extraneous
calculations for exact parameter settings. The number of
multiple streams is set by observing the achieved
application throughput for each transfer operation, and
parameters are gradually adjusted according to the current
performance merit. The transfer time of each operation is
measured and the total throughput is calculated. The best
throughput for the current concurrency level is recorded.
The actual throughput value of the data transfers is
calculated, and the number of multiple streams is increased
if the throughput value is larger than the best throughput

seen so far. In this dynamic approach, we try to reach to a
near optimum value gradually, instead of finding the best
parameter achieving the highest throughput at once.
We underline the fact that the focus is on application level
tuning such that we do not deal with low-level network and
server optimization. We adjust the number of multiple
streams according to the dynamic environmental conditions,
and also taking into the consideration of the fact that there
might be other data transfer operation using the same
network resources.

We first start with a single stream of a transfer and measure
the instant achievable throughput. The number of concurrent
transfers running at the same time is increased gradually as
long as there is any performance gain in terms of overall
throughput. Although this incremental approach is practical
especially for a large-scale data transfer that takes time to
complete, a good starting point is highly desirable in terms
of the number of multiple streams. Inspired from the TCP
congestion window mechanism, we benefit from
exponentially increasing the concurrency level in the
beginning of the tuning process. Figure 6 gives a glimpse of
the algorithm used to set the optimum concurrency level.
We analyze the search pattern in two phases. In the first
phase, we exponentially increase the number of multiple
streams to quickly find a good starting point. In the second
phase, we gradually set the concurrency level by measuring
instant throughput between every parameter update in order
to come up with the optimal number of multiple streams in a
dynamic manner.
The interval between the adjustment points is another
important issue. We measure the instant throughput
performance, but it may not be appropriate to make
adjustment on the number of concurrent streams after every
measurement point. Considering the possibility of minor
fluctuations in the network throughput performance, we set
a threshold value based on the transferred data size before
observing any changes in the achievable throughput
performance and deciding the needs of adjustments on the

Figure 6: Algorithm searching for the optimal concurrency level

Figure 5: Dynamic transfer adjustment: (a) TCP streams, (b) total
bytes transmitted, (c) instant throughput over the time in seconds.

number of concurrent streams. This property has also
shown in Figure 5.a where the number of concurrent
streams is adjusted based on the major changes in the
achievable throughput. Figure 5.c shows the corresponding
changes in the instant throughput during the entire transfer.
If a significant drop change in the throughput performance
has been detected, the number of concurrent streams is
decreased by half (N/2), and searching for the optimal
number of concurrent streams gets started as described in
Figure 6.

4.2 A Simple Throughput Prediction Model
We have performed several experiments with various file
sizes by changing the number of concurrent TCP streams.
Figure 7 shows the overall throughput performance over the
number of concurrent TCP streams under different round
trip time (RTT) values when different sizes of files are
transferred. The first observation is that, the latency directly
affects the behavior of the throughput performance curve.
Figure 7.a shows throughput performance on a 10-Gbps
network with round-trip time 0.5ms. As seen in Figure 7.b,
more TCP streams are needed to fill the network bandwidth
when latency is higher.

 Our second observation is that we can use power-law to
come up with a simple prediction schema. We see that the
relationship between the number of multiple streams and the
throughput gain can be approximated by a simple power-
law model. Figure 8 illustrates log-log graphs for total
throughput versus the number of multiple streams. We can
classify the behavior into two parts. In the first part, where
we reach 80% of the achievable throughput, the power law
approximation models the behavior of the multiple streams
versus throughput. Based on this information, we present a
power-law approximation to predict the number of multiple
streams.

Power-law demonstrates the mathematical relationship
between two quantities where one attribute varies as a
power of another attribute. Many functions, especially man-
made phenomena, follow power law [28,29]. In our case,
the achievable throughput varies as a power of the number
of streams where the scaling exponent is related to the
round-trip time. It seems to represent the tradeoff between
the gain and the cost of adding TCP streams in a data
transfer operation over a network.

A simple model was also developed to estimate the starting
point based on round-trip time (RTT) between the source
and destination hosts. The goal is to set the initial number of
multiple streams that would be calculated in the fast-start
phase of the algorithm given in Figure 6, and it will be used
as the base point in the second phase of the algorithm,
where we gradually adjust for optimum tuning. Note that we
try to obtain a good starting point that will be used later for
fine-tuning.
The power law approximation is modeled as

 T = (n / c) (RTT / k) (1)

where T is achievable throughput in percentage, n is the
number of multiple streams (n > 0), RTT is the round trip
time, and c and k are constant factors. Unlike other models
[23,24,25] trying to find an approximation model for the
multiple streams and throughput relationship, this model
only focuses on the initial behavior of the transfer
performance.
As in Figure 9, test runs show achievable throughput over
the number of concurrent transfers in different RTT values.
When RTT is low, the achievable throughput starts high
with the low number of streams and quickly approaches to
the optimal throughput. When RTT is high, more number of
streams is needed for higher achievable throughput. Our
goal is to come up with a proper starting point for the
number of concurrent streams. The simple estimation model
must capture the relationship between the latency and the

Figure 8: Total throughput over the number of streams (log-log
scale).

Figure 7: Total throughput over the number of streams;
(a) rtt=0.5 ms, (b) rtt=70ms

throughput performance. The initial estimation value will be
used in dynamic parameter tuning for the optimum number
of streams.
Since our simple model estimates the achievable throughput
in percentage, (n / c) should be less than 1. Further, the
exponent (RTT / k) should be less than 1, in order to capture
the relationship between the achievable throughput in
percentage and cost of adding additional transfer streams
into the transfer operation. In our test, shown in Figure 9,
where we have conducted experiments over high-bandwidth
networks with high and low latency, we set c as 100 as the
maximum number of concurrent streams, and k as 300 the
maximum RTT. The constant values in the given formula
can be adjusted to obtain more accurate model. However,
accurate starting point is not required in our case, and the
model can estimate the number of streams to give 80% of
achievable throughput performance as starting point, similar
to 80-20 rule in Pareto distributions [29].

0.8 = (n / c) (RTT / k) (2)

n = (e (k * ln 0.8 / RTT)) · c (3)
According to the equation (3), the initial estimated value for
number of streams n is; 10 if RTT is 30ms (Figure 9.d), 38 if
RTT is 70ms (Figure 9.e), 61 if RTT is 140ms (Figure 9.f),
and 0.1 (which is rounded to 1) if RTT is 10ms (Figure 9.c).

A simple throughput prediction model for approximating
the initial behavior of the transfer performance would be
effective in quickly obtaining high transfer performance in
BDM, and dynamic transfer adjustment contributes to the
management in BDM for the optimized as well as controlled
transfer performance.

5. TESTBED
The Green Data Oasis (GDO) [6] at LLNL has over 600 TB
of spinning disk and serves 35 TB of IPCC CMIP-3 multi-
model data. Two GridFTP server nodes with Solaris 10
running ZFS on AMD-64 hardware were used with access
to the 10-Gbps ESnet network. Two NERSC Data Transfer
Nodes [7] were used to transfer data located on NERSC
storage units based on GPFS. A 10-Gbps SDN through
OSCARS [8] could be reserved through ESnet between
NERSC and LLNL. In this test setup, randomly selected a
few climate datasets from IPCC CMIP-3 were replicated for
test runs under different transfer conditions. Dataset sizes
range from 40 GB to 10 TB.

6. CONCLUSION
The ESG has the difficult challenges of managing the
distribution of massive datasets and accessing and analyzing
them. The IPCC CMIP-3 holds over 35 TB of data at the
LLNL site. The IPCC Coupled Model Intercomparison
Project, phase 5 (CMIP-5) is projected to be 10 PB. Bulk
Data Mover (BDM) is to provide the efficient data delivery
required for the scalability that the ESG needs for data
access in the highly collaborative decentralized
environment, with efficient and adaptive transfer
management. The dynamic transfer adjustment model gives
a base for optimal transfer throughput management. The test
runs in real shared environment show that the dynamic
transfer management in BDM with the dynamic transfer
estimation for approximating the initial behavior of the
transfer performance is effective in obtaining optimal
transfer performance as well as controlling the data transfers
at the desired performance for the climate datasets that are
characterized by large volume of files with extreme variance
in file sizes.

ACKNOWLEDGMENTS
This work was funded by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of
Energy, under contracts DE-AC02-05CH11231. We would
like to thank Jeff Long at Lawrence Livermore National
laboratory, and Jason Hick at National Energy Research
Scientific Computing Center for their support on our
experiments.

REFERENCES
[1] Earth System Grid (ESG),

http://www.earthsystemgrid.org/, http://esg-
pcmdi.llnl.gov

[2] E. Dart and B. Tierney (editors), "BES Science
Network Requirements", Report of the Basic Energy
Sciences Network Requirements Workshop sponspored
by Basic Energy Sciences Program Office, DOE Office
of Science and the Energy Sciences Network 2007.

[3] D. N. Williams, D. E. Middleton, M. Anitsecu, V.
Balaji, W. Bethel, S. Cotter, W. G. Strand, K.

Figure 9: Achievable throughput in percentage over the number
of streams with low/medium/high RTT;

(a) RTT=1ms, (b) RTT=5ms, (c) RTT=10ms, (d) RTT=30ms, (e)
RTT=70ms, (f) RTT=140ms

Schuchardt, and A. Shoshani, "Extreme Scale Data
Management, Analysis, Visualization, and Productivity
in Climate Change Science," Report for the Extreme
Scale Computing Workshop sponsored by DOE Joint
Office of Biological and Environmental Research
(BER) and the Office of Advanced Scientific
Computing Research (ASCR), http://esg-
pcmdi.llnl.gov/publications_and_documents/Extreme_S
cale_Data_Mgmt_Panel%20Report.pdf 2008.

[4] A. Sim, D. Gunter, V. Natarajan, A. Shoshani, D.
Williams, J. Long, J. Hick, J. Lee, E. Dart, "Efficient
Bulk Data Replication for the Earth System Grid",
International Symposium on Grid Computing (ISGC),
2010.

[5] Williams et al., “The Earth System Grid: Enabling
Access to Multimodel Climate Simulation Data”, in the
Bulletin of the American Meteorological Society,
February 2009.

[6] Green Data Oasis (GDO),
https://computing.llnl.gov/resources/gdo/

[7] NERSC Data Transfer Node (DTN),
http://www.nersc.gov/nusers/systems/datatran/

[8] OSCARS, http://www.es.net/OSCARS/
[9] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M.,

Dumitrescu, C., Raicu, I., and Foster, I., "The Globus
Striped GridFTP Framework and Server" In
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (November 12 - 18, 2005).

[10] Bulk Data Mover (BDM), http://sdm.lbl.gov/bdm/
[11] D. Bernholdt, S. Bharathi, D. Brown, K. Chancio, M.

Chen, A. Chervenak, L. Cinquini, B. Drach, I. Foster,
P. Fox, J. Garcia, C. Kesselman, R. Markel, D.
Middleton, V. Nefedova, L. Pouchard, A. Shoshani, A.
Sim, G. Strand, D. Williams, "The Earth System Grid:
Supporting the Next Generation of Climate Modeling
Research," Proceedings of the IEEE, vol. 93, pp. 485-
495, March 2005 2005.

[12] Wu, Y., Kumar, S., and Park, S., "Measurement and
performance issues of transport protocols over 10Gbps
high-speed optical networks", Computer Network 54, 3
(Feb. 2010), 475-488

[13] M. Balman and T. Kosar, "Data Scheduling for Large
Scale Distributed Applications", In Proceedings of the
9th International Conference on Enterprise Information
Systems Doctoral Symposium (DCEIS 2007), 2007

[14] H. Bullot, R. Les Cottrell and R. Hughes-Jones,
"Evaluation of Advanced TCP Stacks on Fast Long-
Distance Production Networks", Journal of Grid
Computing, Springer, Volume 1, Number 4, December,
2003

[15] FastTCP. An alternative congestion control algorithm
in tcp. http://netlab.caltech.edu/FAST.

[16] sTCP. Scalable TCP.
http://www.deneholme.net/tom/scalable/, 2006.

[17] T. Dunigan, M. Mathis, and B. Tierney, "A tcp tuning
daemon”, In Proceedings of SuperComputing: High-
Performance Networking and Computing, 2002.

[18] M. Gardner, S. Thulasidasan, and W. Feng, "User-space
auto tuning for tcp flow control in computational grids",
Computer Communications, 27:1364-1374, 2004.

[19] S. Soudan, B. Chen, and P. Vicat-Blanc Primet, "Flow
scheduling and endpoint rate control in grid networks",
Future Gener. Comput. Syst., 25(8):904–911, 2009.

[20] W. Feng, M. Fisk, M. Gardner, and E. Weigle,
"Dynamic right sizing:An automated, lightweight, and
scalable technique for enhancing grid performance", In
Proceedings of the 7th IFIP/IEEE International
Workshop on Protocols for High Speed Networks,
2002.

[21] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser and I.
Foster, "GridFTP Pipelining", Proceedings of the 2007
TeraGrid Conference, June, 2007

[22] T. Ito, H. Ohsaki, and M. Imase, "On parameter tuning
of data transfer protocol gridftp in wide-area grid
computing", In Proceedings of Second International
Workshop on Networks for Grid Applications,
GridNets, 2005.

[23] Hacker, T. J., Noble, B. D., and Athey, B. D.,
"Adaptive data block scheduling for parallel TCP
streams", In Proceedings of the High Performance
Distributed Computing, 2005.

[24] Mirza, M., Sommers, J., Barford, P., and Zhu, X., "A
machine learning approach to TCP throughput
prediction", SIGMETRICS Perform. Eval. Rev. 35, pg
97-108, 2007

[25] E. Yildirim, M. Balman, and T. Kosar, "Dynamically
Tuning Level of Parallelism in Wide Area Data
Transfers", In Proceedings of DADC'08 (in conjunction
with HPDC'08), Boston, MA, June 2008

[26] D. Yin, E. Yildirim, and T. Kosar, "A Data Throughput
Prediction and Optimization Service for Widely
Distributed Many-Task Computing", In Proceedings of
MTAGS'09 (in conjunction with SC'09), 2009

[27] M. Balman and T. Kosar, "Dynamic Adaptation of
Parallelism Level in Data Transfer Scheduling", In
Proceedings of Second International Workshop on
Adaptive Systems in Heterogeneous Environments (in
conjunction with CISIS2009), 2009

[28] Faloutsos, M., Faloutsos, P., and Faloutsos, C., "On
power-law relationships of the Internet topology", In
Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication SIGCOMM 1999.

[29] M. Newman, "Power laws, Pareto distributions and
Zipf's law", Contemporary Physics, Volume 46, Issue
5, pages 323 – 351, September 2005.

